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Spatial averaging schemes have often been used to improve empirical models that relate radar backscatter
coefficient to soil moisture. However, reducing the noise in backscatter response not related to soil moisture
often results in signal losses that are related to soil moisture. In this study we tested whether a spatial aver-
aging scheme based on topographic features improved regressions relating backscatter coefficient and soil
moisture on the low relief landscape of the Prairie Pothole Region of Canada. Soil moisture data were collect-
ed along hillslope transects within pothole drainage basins at intervals coincident with RADARSAT-1 satellite
overpass. Spatial averaging schemes were designed at four scales: pixel, topographic feature (uplands, side-
slopes, and lowlands), pothole drainage basin, and landscape (0.8 km×1.6 km). The relationship between
soil moisture and backscatter coefficient improved with increasing area of spatial averaging from a pixel
(R2=0.18, Pb0.005), to the pothole drainage basin (R2=0.36, Pb0.005), to the landscape (R2=0.66,
Pb0.005). However, the strongest relationship (R2=0.72, Pb0.005) was obtained by spatially averaging
radar images based on topographic features. These findings indicate that topographically based spatial aver-
aging of RADARSAT-1 imagery improves empirical models that are created to map the complex patterns of
soil moisture in prairie pothole landscapes.
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1. Introduction

Satellite-based radar data holds great promise for mapping soil
moisture over large or inaccessible areas because of the sensitivity
of microwave energy to soil moisture content and the ability of mi-
crowaves to penetrate clouds and low-density vegetation. However,
microwaves also interact with other surface characteristics such as
geometry, roughness and vegetation water content to produce a com-
posite signal. In this paper we explore a spatial technique for improv-
ing the separation of soil moisture from other surface signals in radar
data in the topographically complex landscapes of the Prairie Pothole
Region of central North America (Fig. 1).

Models for retrieving soil moisture from radar sources can be clas-
sified as complex semi-empirical and simple empirical models. Semi-
empirical models include parameters determined from theoretical
interactions between surfaces and microwave energy that attempt
to account for confounding surface characteristics, but these parame-
ters are difficult to retrieve in the field (e.g., Lievens et al., 2010, 2009;
Verhoest et al., 2008). In contrast, empirical models relate the radar
backscatter coefficient directly to soil moisture. Spatial averaging is
used to improve empirical models by averaging the inherent heteroge-
neity from random noise or difficult-to-quantify sources associated
with backscatter response in a givenpixel. Spatial averaging approaches
have ranged in size and shape from surrounding pixel neighborhoods
(e.g., Moran et al., 2000; Thoma et al., 2008), land patches defined by
land use or land cover (e.g., Cognard et al., 1995; Oldak et al., 2003;
Quesney et al., 2000), or drainage basins (Álvarez-Mozos et al., 2005).
In general, increasing the scale of spatial averaging produces stronger
correlations between soil moisture and backscatter coefficient because
the inherent heterogeneity of response at the pixel scale is reduced.
However, the range and distribution of soil moisture are simultaneously
diminished.

It is important to consider the tradeoffs between reducing random
backscatter or mixed surface signals and extracting the true soil mois-
ture signal when selecting a spatial averaging scheme. Physical process-
es controlling soil moisture distribution should be considered in the
selection of a spatial averaging scheme. Topography has long been iden-
tified as an important control on hillslope geomorphological, hydrolog-
ical and biogeochemical processes (e.g., Beven & Kirkby, 1979).
Topographic features along hillslopes from the uplands through side
slopes to lowlands reflect gravitational controls on water and mass
movement and have been used to predict soil moisture in a broad
range of landscapes (e.g., Famiglietti et al., 1998; Western et al.,
1999; Western & Blöschl, 1999). In this paper we explore whether
spatial averaging schemes based on topographic features that can
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Fig. 1. North American Prairie Pothole Region and Saskatchewan study transect.

Fig. 2. Study parcels along boreal ecozone transect. Moisture deficits were derived
based on 30-year (1975–2005) average annual precipitation (P) recorded at nearby
meteorological stations minus potential evapotranspiration (PET) calculated using
the method of Hamon (1963): P1 and P2 (P−PET=−520 mm/yr); P3 (P−PET=
−420 mm/yr); P4 (P−PET=−300 mm/yr); and P5 (P−PET=−270 mm/yr).
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be detected from remote sensing sources may better preserve the
range and distribution of soil moisture while decreasing the con-
founding effect of other surface characteristics.

We hypothesize that a process-based approach to defining spatial
averaging schemes improves empirical models that relate backscatter
coefficient and soil moisture, leading to improved estimation of soil
moisture across topographically variable prairie landscapes. We test
this hypothesis on a natural (non-agricultural) prairie pothole land-
scape. The objectives of this study are (a) to develop a spatial averag-
ing scheme based on topographic features identifiable from LiDAR
digital elevation data sources; (b) to evaluate the sensitivity of soil
moisture expressed in terms of range and distribution to backscatter
coefficient in each of the spatial averaging schemes (i.e., pixels, topo-
graphic features, pothole drainage basins, and landscape); (c) to com-
pare the strength of empirical models that relate backscatter
coefficient to soil moisture for each of the spatial averaging schemes;
and (d) to use the strongest model to create maps of soil moisture.
2. Methods

2.1. Experimental design

The Prairie Pothole Region covers about 750,000 km2 of the Prairie
Ecozone of central North America (Fig. 1). Glacial retreat during the
Wisconsin period left a landscape with millions of small closed basins
commonly called “potholes.” Potholes are often underlain byfine glacial
till with low permeability that severely limits groundwater discharge
and/or recharge, effectively forming ponds fed mainly by surface
water from spring snowmelt and rainwater. Potholes range in size,
depth and connectivity, but the majority have a surface area b1 ha
and rarely become connected through surface hydrologic pathways.

Five 800 m×1600 m parcels of land were located along a moisture
deficit monitoring transect through central Saskatchewan to capture
a range of soil moisture conditions from dry in the south (P1) to
wet in the north (P5) (Fig. 2). The parcels are covered with grasses
of relatively uniform height, density and species composition from
June through September (c.f., Fung, 1969; Scott, 1995). These obser-
vations allowed for an assumption of homogeneous surface charac-
teristics to be made during this period for the purpose of making
direct univariate regressions of soil moisture and backscatter coeffi-
cient. An exception to this assumption is the presence of narrow
(b3 m) emergent zones surrounding ponds that support the growth
of relatively tall grasses, bulrushes and shrubs.
2.2. Volumetric soil moisture content

Soil moisture sampling points were established at 10 m intervals
along four cardinal-facing transects from the ridge of the pothole to
the pointwhere the soil was inundated or saturated; transects were ex-
tended aswater drawdown occurred during the summer (Fig. 3). These
transects were established in about 20 pothole drainage basins that
reflected the distribution of pond permanence classes ranging from
ephemeral to permanent in each parcel (Stewart & Kantrud, 1971). Sur-
face soil moisture was measured from June to September 2005 within
24 h of RADARSAT-1 satellite overpasses. Soil impedance (mV) was
measured using amplitude time domain reflectometry taken with a
ThetaProbe (Delta-T Devices, 1999). Soil impedance readings were
taken from the soil surface (0–6 cm); five readingswere recordedwith-
in a 1 m radius of each sampling point to account for local heterogeneity
in soil moisture conditions, and these readings were then averaged to
obtain one representative reading per sampling point. Soil impedance
readings were converted to volumetric soil moisture content (VSM)
using site-specific calibrations (Carlyle, 2006). Geographic coordinates
were recorded for each sampling point to allow repeated sampling dur-
ing subsequent cycles of observation.

VSM data were generalized to the 25 m grid spacing of the corre-
sponding backscatter images. VSM sample points within a 2.5 m buffer
of the edges of each 25 m pixel were discarded to reduce the influence
of edge values. The remainingVSM sample valueswere averagedwithin
each 25 m×25 m grid. The influence of vegetation and surface rough-
ness characteristics at the emergent zone of ponds was eliminated by
discarding pixels that intersected surveyed pond boundaries.

2.3. Radar backscatter coefficient

Radar image processing and analytical steps are outlined in Fig. 4.
RADARSAT-1 Standard Beam Mode 1 synthetic aperture radar (SAR)
images were acquired at 12.5 m pixel spacing in ascending orbit
and an approximately 23° incidence angle on June 20, August 7 and
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Fig. 3. Locations of VSM sampling ponds and drainage basins showing sampling point
transects.
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31 at P1 and P2; July 21 and August 14 at P3; July 21 and 28 and August
21 at P4; and July 4 and 28 and August 21 at P5 in 2005. Raw digital
numbers were orthorectified, radiometrically corrected for local
incidence angles, and converted to unitless backscatter intensity
numbers at 25 m pixel spacing. Orthorectification and radiometric
corrections were done using a digital elevation model (DEM)
resampled from 0.75 arc sec resolution to 18.7 m grid resolution
(Government of Canada, 2000) in addition to orbital information
and a minimum of eight evenly distributed ground control points
collected from hydrographic and road data layers (Government
of Canada, 2007a,b). Average root-mean-square errors were b7 m
(6.8 m in northing and 6.2 m in easting).

Gamma MAP filters were used to reduce high frequency image
noise (i.e., speckle) while maintaining high frequency edges (Lopes
et al., 1993). To avoid radiating the effects of specular reflectance in
pixels located in inundated ponds onto neighboring pixels, inundated
locations weremasked out prior to filtering. Pond locations and bound-
aries were surveyed on the ground at the beginning of the sampling pe-
riods using a global positioning system. Because of the ephemeral
nature of some of the ponds, inundated locations for each image were
estimated by identifying pixels with backscatter intensity ≤0.05
(−13 dB) that intersected the surveyed pond locations and applying a
1-pixel buffer. The selected pixels were masked from the image and a
Gamma MAP speckle filter using a 3×3 pixel window was applied to
the remaining pixels. Radar image processing steps were performed
using Geomatica 10.1 (PCI Geomatics, 2007).
2.4. Topographic partitioning of landscapes

DEMs for each parcel were interpolated from LiDAR (Light Detec-
tion and Ranging) data (±0.15 m vertical accuracy) using an inverse
distance weighted algorithm to 0.5 m and then resampled to a 2.5 m
DEM using a bilinear resampling method. Following MacMillan
(2000), a low pass 3×3 mean filter was applied to the DEMs to
smooth the effects of elevation noise caused by patterns or trajecto-
ries in the original data collection or by relics of interpolation. Filtered
2.5 m DEMswere then rescaled using a linear contrast stretch with no
saturation to a fixed range of 0–25 m elevation to provide contrast in
slope in parcels with very low relief (e.g., P5).

For each DEM, pothole basin boundaries were determined through a
combination of digital terrain analysis and the outer reaches of VSM
sampling transects. Topographic features within basins were defined
that captured the hydrologic gradient down the hillslopes and that
could be resolved at the 25 m pixel spacing of the RADARSAT-1 images.
The topographic features included ridges, shoulders (upper convex
slopes), side-slopes (concave slopes between uplands and lowlands)
and lowlands (relatively flat areas bordering ponds and depressions).
These topographic features were mapped using a supervised hierarchi-
cal fuzzy classification of topographic attributes.

A classification trainingdata setwas generated by collecting samples
for identification of topographic features based on heuristics along
cross-sectional profiles of the basins. The classification of topographic
features was based on the following steps. First, six terrain attributes
were derived from the DEMs: (a) percent height relative to local pits
and peaks; (b) percent height relative to local channels and divides;
(c) topographic wetness index; (d) slope gradient; (e) profile curva-
ture; and (f) plan curvature (see Webster et al., 2011). Second, statisti-
cal distributions of the terrain attribute values for each topographic
feature were examined to determine the appropriate attributes for sep-
arating the features; a terrain attributewas considered to be a useful at-
tribute for separating a given feature when the mean±one standard
deviation was separated from the means of other features or feature
groupings. Third, a fuzzy membership score of a terrain attribute for a
topographic feature class was modeled between no membership (0)
and full membership (1) in sigmoidal functions. The direction (increas-
ing or decreasing) of the membership function was determined from
the relationship of a given feature class mean to other feature class
means (e.g., increasing if the given feature class mean was greater
than the other feature class means). For an increasing function, the fea-
ture class mean value minus one standard deviation was used to define
a membership score of 0.5, increasing to full membership at the mean.
For a decreasing function, the feature class mean value plus one stan-
dard deviation was used to define a membership score of 0.5, decreas-
ing from full membership at the mean. Finally, fuzzy membership
scores for each pixel were arithmetically combined and the result con-
verted from a fuzzy to a crisp value to assign a topographic feature or
null class for the next rule in the class hierarchy. The rules for the clas-
sification, including terrain attributes, membership functions and func-
tion transition values for each rule, are outlined in Table 1.
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Fig. 4. Flow chart of SAR image processing and analytical steps used in this paper.
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The classified topographic features were tested for differences in
VSM using a One-Way ANOVA Difference on Ranks test on VSM
values at the reference sample points. Median and inner quartile
range of VSMwere significantly different for the classified topograph-
ic features (Fig. 5). Classification maps are shown in Fig. 6. Ground
reference data were compared to the classified maps and an overall
classification accuracy of 87% was found.

2.5. Spatial averaging schemes

Gridded VSM values were related to backscatter coefficient at four
different spatial averaging schemes (i.e., pixel, topographic feature,
basin, and parcel). At the pixel scale, backscatter intensity values were
converted directly to backscatter coefficient (σ0) in units of decibels
using the formula σ0=10×log10 (intensity) (Shepherd, 2000). At the
topographic feature scale, backscatter intensity and gridded VSM were
averaged per topographic feature, per pothole basin, per parcel, and
per sampling cycle. At the pothole basin scale, backscatter intensity
and gridded VSM values were averaged per pothole basin, per parcel,
and per sampling cycle. At the parcel scale, backscatter intensity and
gridded VSM values were averaged per parcel and per sampling cycle.
At all scales coarser than the pixel, backscatter intensity was first aver-
aged then converted to backscatter coefficient.

2.6. Relating radar backscatter coefficient to volumetric soil moisture

Linear and non-linear regression models relating VSM to backscat-
ter coefficient at each spatial averaging scale were examined for fit.
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Table 1
Topographic feature fuzzy classification hierarchy.

Rule Fuzzy variable Terrain attribute Function Central concept Dispersion index

1 Ridge RIDGE1 Slope gradient (%) Decreasing 2.4 0.9
RIDGE2 Relative elevation to local channels and divides Increasing 70 20
RIDGE3 Plan curvature Decreasing −6 6
If (RIDGE1×RIDGE2×RIDGE3)N0.33, then ‘RIDGE’, else ‘NULL’

2 Lowland (from rule 1 ‘NULL’ class) UPPER1 Wetness index Decreasing 6.2 0.9
UPPER2 Slope gradient (%) Increasing 5.3 4
UPPER3 Relative elevation to local pits and peaks Increasing 22 16
LOWER1 Wetness index Increasing 6.4 1.4
LOWER2 Slope gradient (%) Decreasing 7.6 4
LOWER3 Relative elevation to local pits and peaks Decreasing 21 12
If (UPPER1×UPPER2×UPPER3)N(LOWER1×LOWER2×LOWER3), then ‘UPPER’, else ‘LOWLAND’

3 Sideslope (from rule 2 ‘UPPER’ class) SHOULDER1 Profile curvature Decreasing 0.12 0.3
If SHOULDER1N0.5, then ‘SHOULDER’, else ‘SIDESLOPE’

4 Upland ‘UPLAND’= ‘RIDGE’ AND ‘SHOULDER’
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Simple two-parameter exponential growth regression models
(y=aebx) were found to provide similar fits at pixel, basin and parcel
scales and an improved fit at the topographic feature scale. As a result,
exponential models were developed in addition to linear models at
each spatial scale. The relative strengths of the relationships were
evaluated using the coefficient of determination (R2) and the
Fig. 5. Box whisker plots of VSM sample values for topographic features (A) and per
parcel (B). Boxes show 25th and 75th percentile lines and median in center line,
with whiskers marking outliers outside 5th and 95th percentiles. 1997 soil moisture
observations were counted in upland features, 2549 observations were counted in
sideslope features, and 2407 observations were counted in lowland features. Different
letters indicate significant differences in median values as determined by Dunn's pair-
wise groupings (one-way ANOVA difference on Ranks, Pb0.05).
associated P value. The standard error (S.E.) was used to measure
the precision of the models. Statistical analyses were performed
using SigmaPlot 11.0 (Systat Software, 2008).

At the topographic feature scale, many pixels did not contain uni-
form topographic features, which limited the number of pixels for the
topographic feature scale (n=104). To examine the effect of sample
size from discarding pixels for the topographic feature scale, we ran-
domly selected a number of pixels equal to the number of pixels sam-
pled to develop the topographic feature-averaging scheme (i.e.,
104 pixels) and prepared models at the pixel, topographic feature,
basin and parcel scales. For the topographic feature scale, the mixed
pixels were assigned to a topographic feature using a 50% majority
classification. To examine the effect of including only pixels with uni-
form topographic features, we prepared regression models at the
pixel, basin and parcel averaging scales between backscatter coeffi-
cient and VSM using only the 104 pixels containing uniform topo-
graphic features.
3. Results

3.1. Effects of spatial averaging schemes

The observed backscatter coefficient variation at the pixel scale
may be interpreted as random noise, as systematic but unquantified
surface effects or as variation in VSM itself. Given a normal distribu-
tion of random backscatter noise, a superior spatial averaging scheme
will reduce the range in backscatter coefficient due to unwanted or
unknown effects but preserve that part of the range that is in re-
sponse to VSM. Mean backscatter coefficient and VSM did not change
significantly between the spatial averaging schemes, while ranges de-
creased with increasing coarseness of the averaging scales except at
the scale of topographic features (Table 2). A 43% reduction in the
range of backscatter coefficient from the pixel scale was observed at
the topographic features scale (compared to a 29% reduction at the
basin scale and a 68% reduction at the parcel scale), while only a
17% reduction in VSM was observed (compared to a 49% reduction
at the basin scale and a 73% reduction at the parcel scale). Further-
more, the coefficient of variation (CV) of the backscatter coefficient
decreased consistently with increasing spatial average scales, while
the CV of VSM was comparable at the spatial average scales of the
pixel and topographic feature. In particular, the backscatter coeffi-
cient related to VSM in the relatively small lowland areas was pre-
served with the topographic feature spatial average scheme but lost
in the coarser basin and parcel spatial averaging schemes.

The topographic feature spatial average scheme revealed an in-
crease in backscatter coefficient and VSM along the topographic gra-
dient from uplands to lowlands. Mean VSM and backscatter
coefficient were both lower in the uplands (θ=0.19 m3 m−3; σ0=
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Fig. 6. Topographic feature classification maps.

Table 2
Mean, coefficient of variation and range of volumetric soil moisture (VSM) content (θ)
and backscatter coefficient (σ0) averaged at the pixel, topographic feature, basin and
parcel scales.

VSM (θ) Mean
(m3 m−3)

Standard
deviation

Coefficient of
variation (%)

Range
(m3 m−3)

Number of
observations

Pixel 0.21 0.09 41 0.71 1418
Topographic
feature

0.24 0.14 56 0.59 56

Basin 0.21 0.07 33 0.36 218
Parcel 0.21 0.07 31 0.19 14

Backscatter
coefficient (σ0)

(dB) (dB)

Pixel −4.90 1.12 23 8.84 1418
Topographic
feature

−4.81 1.01 21 5.02 56

Basin −4.89 0.97 20 6.24 218
Parcel −4.83 0.81 17 2.85 14

Table 3
Mean volumetric soil moisture (VSM) content (θ) and backscatter coefficient (σ0) av-
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−5.30 dB) than on the sideslopes (θ=0.22 m3 m−3; σ0=−4.58 dB),
which were in turn lower than in lowlands (θ=0.28 m3 m−3; σ0=
−4.47 dB) (Table 3). A one-way analysis of variance on ranks showed
a statistically significant difference in median values of both variables
between the three topographic features (Pb0.005).
eraged at the topographic feature scale per feature type.

VSM (θ) Mean (m3 m−3) Number of observations

Lowland 0.28 31
Sideslope 0.22 19
Upland 0.19 6

Backscatter coefficient (σ0) (dB)

Lowland −4.47 31
Sideslope −4.58 19
Upland −5.30 6
3.2. Radar backscatter coefficient vs. VSM

Regression models between backscatter coefficient and VSM were
fitted by pooling all data at each spatial averaging scale (i.e., from
each sampling period and for each parcel). The exponential regres-
sion models generally outperformed the linear regression models.
While there were no differences or only slight increases in the R2 of
exponential compared to linear models at the pixel, basin and parcel
scales, there was a substantial increase at the topographic feature
scale (16%) (Table 4).

Among the exponential models, VSM showed a weak relationship
with backscatter coefficient at the pixel scale (Fig. 7; Table 4;
R2=0.18, Pb0.005). This poor correlation can likely be attributed to
(a) positional error, (b) systematic error related to failures in our as-
sumption of homogeneity in surface roughness and vegetation charac-
teristics, and/or (c) random speckle-related noise that remains in the
backscatter images even after resampling and filtering. These effects
were reduced at coarser spatial averaging scales, leading to improved
regressions (R2=0.36, Pb0.005 at the basin scale and R2=0.66,
Pb0.005 at the parcel scale). However, the exponential models devel-
oped at these scales failed normality and/or constant variance tests.

We found a stronger and statistically significant exponential
model at the topographic feature scale (Fig. 7; Table 4; R2=0.72,
Pb0.005). Separate regressions fitted to the wetter lowland features
and the combined drier sideslope and upland features showed differ-
ences in both the slope and strength (R2) of the exponential models
(Fig. 8; Table 5). The exponential model relating backscatter coeffi-
cient and VSM for the drier topographic features showed only a slight
increase in R2 (0.20, Pb0.005) over the model developed at the pixel
scale (0.18, Pb0.005); however, this model passed both normality
and constant variance tests. The exponential model for the wetter to-
pographic features showed a substantial increase in R2 (0.81,
Pb0.005) over the model developed at the pixel scale.

To examine whether the success of the exponential model at the
topographic feature scale could be attributed to sampling fewer back-
scatter image pixels, we randomly selected a number of pixels equal
to the number of pixels sampled to develop the topographic
feature-averaging scheme (i.e., pixels containing uniform topographic
features, n=104, Table 6). We found that the randomly selected pixel
model had similar strength to the original model (R2=0.18 vs. 0.17),
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Table 4
Comparison of linear and exponential growth models relating volumetric soil moisture
(VSM) to backscatter coefficient averaged at the pixel, topographic feature, basin and
parcel scales.

n Equation R2 S.E. Normality Constant
variance

P

Linear
Pixel 1418 0.37+

0.03σ0
0.17 0.08 Failed Failed b0.005

Topographic
feature

56 0.71+
0.10σ0

0.56 0.09 Failed Failed b0.005

Basin 218 0.41+
0.04σ0

0.35 0.06 Failed Failed b0.005

Parcel 14 0.53+
0.07σ0

0.66 0.04 Passed Passed b0.005

Exponential
Pixel 1418 0.46e0.16σ

0
0.18 0.08 Failed Failed b0.005

Topographic
feature

56 1.66e0.43σ
0

0.72 0.07 Passed Passed b0.005

Basin 218 0.60e0.22σ
0

0.36 0.05 Failed Failed b0.005
Parcel 14 0.93e0.31σ

0
0.66 0.04 Passed Failed b0.005

Fig. 7. Exponential growth relationships between VSM and backscatter coefficient aver-
aged at (A) 25 m pixel spatial averaging scale; (B) topographic feature scale; (C) basin
scale; and (D) parcel scale.
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but the randomly selected topographic feature, basin and parcel scale
models were much weaker than the original models (R2=0.25 vs.
0.72, 0.18 vs. 0.36, and 0.36 vs. 0.66, respectively). We then examined
the effects of including only the same pixel samples used to develop
the topographic feature averaging scheme at the pixel, basin and par-
cel averaging scales. The models improved at each different spatial
averaging scheme [R2=0.56 vs. 0.18 (pixel); 0.74 vs. 0.36 (basin),
0.80 vs. 0.66 (parcel); Table 7].

The exponential model developed at the topographic feature spa-
tial averaging scale passed both normality and constant variance tests
and was applied to a test image comprising an equal distribution of
upper and lower topographic features (September 7, P3; this image
was not included in the development of the model). Modeled VSM
was related to observed VSM data averaged at the topographic fea-
ture scale (Fig. 9). There was good agreement between observed
and modeled values (R2=0.81; Pb0.005), indicating a useful model.

3.3. Radar mapping of soil moisture in prairie potholes

Maps of VSM using the exponential models developed at the pixel,
topographic feature and basin spatial averaging scales were produced
(Figs. 10, 11). Topographic features from the 2.5 m classified maps
and basins were projected to the 25 m×25 m grid resolution of the
backscatter images using nearest-neighbor resampling before apply-
ing the respective model. The maps developed from the topographic
feature model captured a large portion of the spatial heterogeneity
of VSM in the prairie landscape. The VSM maps captured the increas-
ing trend in soil moisture from uplands to lowlands within pothole
basins, and the increasing trend in soil moisture from the drier loca-
tions at the southern limit of the moisture deficit gradient (P1) to
the wetter locations at the northern limit (P5) (Fig. 10). The VSM
maps also captured the temporal trend from the dry summer months
(July and August) to wetter fall months (Fig. 11).

4. Discussion

In this paper we explored improvements in the spatial averaging
of backscatter coefficient from SAR data for the purpose of extracting
surface VSM information from natural prairie pothole landscapes. We
determined that topographic features from a classification of terrain
attributes derived from LiDAR DEMs are the smallest physically
based control on water movement identifiable from remote sensing
sources. We compared the effect of spatial averaging at this scale on
capturing VSM while reducing backscatter response to random or
unquantified surface effects unrelated to VSM with other spatial
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Fig. 8. Exponential growth relationships between VSM and backscatter coefficient
averaged at the topographic feature scale per lowland (1.75e0.43σ

0
; n=31; R²=0.81;

S.E.=0.09; Pb0.005) and sideslope and upland (0.46e0.17σ
0
; n=25; R²=0.20; S.E.=

0.06; Pb0.005) feature types.

Table 6
Exponential growth models relating volumetric soil moisture (VSM) content (θ) to
backscatter coefficient averaged at the pixel, topographic feature, basin and parcel
scales using 104 randomly selected backscatter image pixels to examine whether the
success of the model at the topographic feature scale could be attributed to sampling
fewer backscatter image pixels.

n Equation R2 S.E. Normality Constant
variance

P

Pixel 104 0.37e0.12σ
0

0.17 0.06 Failed Failed b0.005
Topographic
feature

96 0.98e0.26σ
0

0.25 0.17 Failed Failed b0.005

Basin 79 0.36e0.17σ
0

0.18 0.06 Failed Failed b0.005
Parcel 14 0.51e0.18σ

0
0.36 0.05 Passed Passed 0.03
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averaging schemes. We then compared the performance of empirical
models relating spatially averaged backscatter coefficient and VSM
developed from the different spatial averaging schemes.

A decrease in heterogeneity in backscatter coefficient was found
with increasing coarseness of spatial averaging from image pixels to
drainage basins to parcels. The decreasing heterogeneity corre-
sponded with improvements in the strength of exponential models
relating backscatter coefficient and VSM developed at the pixel
(R2=0.18), basin (R2=0.36) and parcel (R2=0.66) scales. Similar
findings were reported by Álvarez-Mozos et al. (2005) in the low re-
lief La Tejería watershed of northern Spain, where weak linear rela-
tionships at the pixel scale (R2=0.30–0.37) were improved when
averaged at agricultural field (R2=0.44–0.82) and drainage basin
scales (R2=0.86). Similarly, other studies including Cognard et al.
(1995), Koyama et al. (2010), Moran et al. (2000), and Thoma et al.
(2004) found improvements in relationships developed at increasing
spatial averaging scales in a variety of low relief landscapes.

Improvements in the strength of the relationships at coarser spatial
averaging scales were attributed to the decrease in heterogeneity of
backscatter response to random noise as well as surface effects that in-
clude VSM. In fact, these improvements were associated with decreases
in the heterogeneity of VSM thatwere greater than those of the backscat-
ter response. This indicated a loss of information content related to VSM.

We found that spatial averaging at the scale of topographic fea-
tures preserved a larger range of VSM values present in backscatter
pixels than in coarser scales. In contrast to spatial averaging at coarser
scales, the reduction in the range of VSM values at the scale of topo-
graphic features was smaller than in the range of backscatter coeffi-
cients. A greater portion of the backscatter response to VSM was
preserved at this scale in relation to random noise or response to un-
known surface effects. This finding was consistent with our
Table 5
Comparison of linear and exponential growth models relating volumetric soil moisture
(VSM) content to backscatter coefficient averaged at the topographic feature scale per
lowland and combined sideslope and upland feature types.

n Equation R2 S.E. Normality Constant
variance

P

Linear
Lowland 31 0.86+

0.13σ0
0.71 0.09 Failed Passed b0.005

Sideslope/upland 25 0.36+
0.03σ0

0.21 0.06 Failed Failed b0.005

Exponential
Lowland 31 1.75e0.43σ

0
0.81 0.07 Passed Passed b0.005

Sideslope/upland 25 0.46e0.17σ
0

0.20 0.06 Passed Passed b0.005
expectations that topography is an important spatial control on the
distribution of VSM that affects backscatter response in prairie pot-
hole basins.

The strongest relationship between backscatter coefficient and VSM
was found in the exponential model developed at the topographic fea-
ture spatial averaging scale (R2=0.72, Pb0.005). This improvement in
model performance was related to topographic controls on VSM, as
demonstrated by increases in both mean VSM and backscatter coeffi-
cient with decreases in elevation from upland to sideslope to lowland
features. This improvement may also be related to topographically con-
trolled surface characteristics that influence backscatter coefficient that
were not considered explicitly in this study (e.g., surface geometry or
roughness). However, relationships between backscatter coefficient
and VSM developed at the pixel and at coarser spatial averaging scales
showed strong improvements using only pixel samples of uniform to-
pographic features. Thesefindings demonstrate thatmixed topographic
features produce a substantial portion of backscatter noise (i.e., pixels
containing heterogeneous terrain). This illustrates the importance of
isolating the tendency of backscatter response in topographic features
and the suitability of using topographic features as a basis for spatial av-
eraging of backscatter coefficient.

The improved performance of the exponential over the linear
model may be explained by the integration of a slightly positive linear
trend for the drier topographic features with a strongly positive linear
trend for the wetter topographic features. The dominant contribution
of wetter lowland features to the overall strength of the model sug-
gests that these features define areas of uniform VSM with minimal
interference from other surface effects. In contrast, the less dominant
contribution of the other topographic features suggests areas of less
uniform VSM and/or greater interference of surface effects that may
occur on the drier sideslope and upland features. Calibration for
other surface parameters in these higher topographic features may
improve the performance of the model.

The exponential model developed from spatial averaging at the
scale of topographic features captures the physical process of water
movement down hillslopes, as represented in a greater range of
VSM. Compared to other landscape-based spatial averaging schemes
(i.e., drainage basins or arbitrary parcels), the finer scale of topo-
graphic features provides a more detailed spatial estimation of VSM
across the natural prairie pothole landscape. The exponential model
was developed on a natural prairie pothole landscape. While its
Table 7
Exponential growth models relating volumetric soil moisture (VSM) content to back-
scatter coefficient averaged at the pixel, basin and parcel scales using the 104 backscat-
ter image pixel samples used to develop the topographic feature averaging scheme to
examine the effects of including only unmixed pixels.

n Equation R2 S.E. Normality Constant variance P

Pixel 104 1.55e0.43σ
0

0.58 0.07 Failed Failed b0.005
Basin 48 1.75e0.44σ

0
0.74 0.07 Passed Failed b0.005

Parcel 14 1.80e0.45σ
0

0.80 0.04 Passed Passed b0.005
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Fig. 9. Linear relationship between observed and modeled VSM at the topographic fea-
ture scale for test image at P3 (September 7).

Fig. 10. Areal soil moisture maps of P1 (August 7), P2 (August 7), P3 (August 14), P4 (July
graphic feature scale; and (C) basin scale.
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application to “working” landscapes with different agricultural covers
would require further testing, our topographic approach to spatial av-
eraging of backscatter coefficient holds promise for scientific and
management applications that require finer scale estimations of
VSM. Furthermore, with the recent launch of sensors such as
RADARSAT-2, with spatial resolution of about 5 m, the potential of
using topographic features to defining even finer scale estimates of
VSM may be realized.

5. Conclusions

The combined use of topographic features derived from fine reso-
lution digital elevation models and SAR data offers improvement in
models for estimating volumetric soil moisture (VSM) on complex
landscapes. Compared with coarser spatial averaging schemes, spatial
averaging of SAR backscatter coefficient and VSM based on topo-
graphic features (uplands, sideslopes and lowlands) (1) captured
more of the natural heterogeneity of VSM found in natural prairie
pothole landscapes; (2) reduced the heterogeneity of backscatter re-
sponse unrelated to VSM signals; (3) improved the performance of
an empirical model relating backscatter coefficient and VSM, and
(4) provided a more detailed spatial estimation of VSM within prairie
pothole basins. These findings imply that the physical processes
28) and P5 (July 28) from exponential models developed at (A) pixel scale; (B) topo-
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Fig. 11. Areal soil moisture maps of P3 using topographic feature model: (A) July 21;
(B) August 14; (C) September 7; and (D) October 1.
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influencing VSM distribution should be considered when developing
spatial averaging schemes for mapping soil moisture from backscatter
coefficients.
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